sábado, 26 de febrero de 2011

DESIGUALDADES E INTERVALOS


DESIGUALDAD:
En matemáticas una desigualdad es una relación que existe entre dos cantidades o expresiones y, que nos indica que tienen diferente valor. Es decir, lo contrario a lo que ocurre en una igualdad.1
En la desigualdad, los términos están relacionados por un símbolo de "mayor que" (>) o "menor que" (<). También existen otros derivados de estos dos. Si alguno de estos dos símbolos aparece acompañado por una línea horizontal por debajo, significa "mayor o igual que" o "menor o igual que", respectivamente. Un ejemplo de una desigualdad es: 2x + 7 < 19 Que se lee como "2 x más 7 es menor que 19". Y representa al conjunto de números para el que esta expresión es verdadera. Ejs: 4^x-2 (4 equivale a x-2) /esto nos llevaria ya a un prefijo ecuacional puro, eliminando las incomodidades de la escritura dialectal/

INTERVALOS:En Análisis matemático, se denomina intervalo a la máxima división sectorial sumisa, es decir al subconjunto de la doble implicación latente en matemáticas subconjunto conexo de la recta real. Más precisamente, son las únicas partes I de R que verifican la siguiente propiedad:
Es un conjunto de números que se corresponden con los puntos de una recta o segmento, en el que se encuentra un ordenamiento interno entre ellos. Los intervalos es el espacio que se da de un punto a otro en el cual se toman en cuenta todos los puntos intermedios. Por ejemplo: en una recta tenemos un intervalo:[-2,2]entre este espacio se encuentran los números (-2-1,0,1,2) aquí se encuentra un intervalo.....ya que el espacio abarca una serie de números consecutivos que se corresponden entre sí.


EJEMPLOS:
Todos los reales comprendidos entre a y b, sin  incluir a, ni b Todos los reales comprendidos entre a y b, sin  incluir a, ni b.
Todos los reales mayores que a, sin incluir a. Todos los reales mayores que a, sin incluir a.
Todos los reales entre m y n, incluyendo a m y no incluyendo a n. Todos los reales entre m y n, incluyendo a m y no incluyendo a n
.

No hay comentarios:

Publicar un comentario